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A HYBRID METHOD FOR THE SOLUTION OF SOME MUL.TI-CO*IODITY

SPATIAL EQUILIBRIUM PROBLEMS

by

Jong-Shi Pang

ABSTRAC T. In this paper , we first derive a unified formulation at

the multi-coemodity transportation and transshipment spatial equilibrium

models as a linear complementarity problem with certain block structure .

We then show that a block successive overrelaxation method is applicable

for solving the resulting complenientarity problem. The method consists

of solving a sequence of subproblems of the single-connnodity type. These

subproblems are to be solved by a special-purpose principal pivoting

algorithm developed in an earlier paper. Computational. experience of

solving some fairly large problems by the proposed hybrid method is

presented.

Key Words. Successive overrelaxation, Spatial equilibritun , Transportation ,

Transshipment , Linear coniplementarity, Spec ial structure , Computational - . -

experience.
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1. INTRODI.k~TION

U~ the past few yea rs • the re have been severa l published studies

on the numerical solution of various e~onomic spatial equilibrium

models [1 . 1 , 5, ‘
, ‘

~~~~ . Basically , such models are concerned with the

determination of the regional production , consump ti on and inter-regiona l

flows of severa l const~idities so as to achieve price oquilibritun . These

models have important practical appltc:itions . see [~ . t , ‘
~~
. 11) and

references therein .

The o b j ec t iv e  ot t h i s  pap er is to propose a hybr id  method t o r  soivtn~

two types of nulti-cotmuodity spatial e~uiltbrt~un models; namely the

transportation and transshi pment models . These mode is can be viewed as

extensions ot their l inear  ana1o,~s which are the well—known linear

transp ort at  ion and transshipment models . The method operates by solving

a sequ ence of subpr ob lems ~ f the sin~ le-consuod 1tv type. These subprohlems

art’ to he solved by a spec tat—pu pose p r i n c ip a l  p ivottn~ 1%l~Wrtthm

described in a~ earlier paper [ ‘ i .
It is a rather well —known I :tc t that  most spat. t a t  equ iii bri  urn mode Is

can be formul at ed  as comp lementaritv problems . see [S~ ‘ .~~~~. With  the

ass tmtp t ion of linear s upp IY and ~tetnsnd tune t ions these become i i nea r

comp lementa ri c~ problems. Under further as ~
;tmip t tons on titi ’ supp ly and

detMnd functions , the latter complementarity problems can in prin ciple .

b. solved by a number ~f pivoting methods imost notably , Letnke’s almost

cumplementary ptvottn~ al~ovithml . However, due to the tac t that

typically , these linear comp lementltri ty problems are e ’ur~tott5 lv 1 ar ~te .

!‘ Such an ~~st~ ption is made ~‘ery often in practice , see [~ . 11 J .

—.—-~~ ~~~~~~~ ~~~~~J LL_
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it is rather impractical , if not impossible to app ly the pivoting methods

in a straightforward manner.

Among the recently proposed methods for solving multi-coninodity

spatial equilibrium problems the most promising approach seems to be

the Bender ’s decomposition proposed in (9, 101. Nevertheless , despite

the rather encouraging computational results reported in the reference

for solving various practical applications , there is a basic drawback

of the approach , namely , it requires solving quadratic subprograms

(in addition to solving linear ones) which could still be fairly large.

In essence, the hybrid method proposed is a specialization of the

block successive overrelaxation (SOR) iterative method (described in 121)

app licd to a linear complementarity problem with certain block structure .

As we shall demonstrate , such a coinpiementarity problem provides a unified

formulation for both the transportation and transshipment spatial

equilibrium models.

IlL — --— ——-.— 
~~~~~~~~~~~~~~~~~~ ~~~~~~ 4~~4



2 .  THE l~4O SPArIAj EQUILIBRIUM ~~ DELS

We firs t describe the t rans~portatton spatial equilibrium model, A

certain number m ef consnoditit’s are to be shipped trout ti
~ 

supp ly locations

to n~ demand locations . Thu problem is t~ de te rmine  a ~ t ’t of f low

variables ~ — iX~~ i
s, , 3upp ly quantities x — tx 1

l . ‘~emand quantities

V — (V
9 
~l , optima l market supply prices — (\ 1

• I and optimal ~irkct

demand prices X — (~ ~ 
‘t so that the equilibrium conditions below are

s a t i s f i e d  for each ~~ a i ,,,, ,n 1, 9 1 ,... ,n2, and I — 1 

(al Linear regiona l supply and demand functions

I

i 
- ~3 ~ 

+ 
k-i ~~ I k 

~~ k - -d
8 ~ 

- 

k — I  ~~ ~ k~5 k

(bI Op t imum production and consumption

x~~ 0 (p
~~ 

- 

~~~~~~~ — 0

0 - -

(cl Optimum excess supply and demand

x
1 

~ ~ 
X ,~ 

~ 
‘ 0 ~ - 

~~ i ~~~~ 
0

- 
V~~1 B I ‘ j  ~ 0 ~ 

~~ 
x 

~ 
- ‘

~ ~ 
- 0

- . _ _ •  ‘•I ~~~~~ ‘~~ ‘ 
-
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(d) Optimt~~ spatial allocation

1 ‘ I ‘c
9~~

+~~~~-)j1 - 0  X
•j~

-
~
O (C

~~5i
+)
~~i

_ X
~~

’
~X :i

_ O .

In condition (a) above , s~~ , d~ 1
, g~~~ and h3 ik 

are given constants

defining the supply and demand functions . In condition (di , C
3 

is the

unit transportation cost f rom supply ~ to demand 3 . More details on

the description of this model can be found in [11).

By using condition (a) to eliminate the variables p 1
1 
and p~~

may formulate the model as the linear complementarity problem : find

vectors x, y, X , ) . and )~~
‘ such that

(2.1) u — s + G x  - X
1 

~‘0 x~~’0

v - d +Hy + X  ‘o  y~~~O

y — c + sT
~~ - D~

)
~ 

-
~~ 0 X -

~~ 0

x -SX .‘- O

2 
- Y  +DX ~ O X~~’O

T T T I T  1 2 T  2u X a v y .Y X . (~~) \ — ( p )  X — 0 .

Here (
~
) is the multi-coninodity transportation constraint matrix , i.e.,

~



_-

5

D .

with 1k denoting the identity matrix of order k; C and H are the block
diagona’ matrices

(2.2c ) \ ,

5. I
I .5‘ C I Hni l  n2

where C (g 
~ 

and 11
3 

(H~ ~ ~
) are in by in matrices ,

_ _ _ _ _ _ _  i . —- ~- -.--——
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Basically , the transshipment spatial equilibrium model is defined by

a set of equilibrium conditions similar to (a) - (d) above. In this model,

the co~anodities, instead of being shipped direc tly from the supp ly to the

demand locations , may go through some intermediate transshipment points .

If ft is the total number of regions in the market , then the problem is to

find a set of flow variables X — (X33 ~~ 
net flow quantities y — (y r) 50

that the equilibrium conditions below are satisfied for each 
~~~, 3 — 1 ,... ,n

and

(A) Linear regional supply and demand funct ions

— a~~ 
k—I 

b 
~. k

(B) Conservation of flows

ii

Y ~~~E X  - t X31 
V I  ~ V’1

(C) Op t imum spatial allocation

c + - n  - O  (c +n - n  )X — 033i i ~3j — ‘ 

~ 3i ‘ 
~~3i ~i 91 ~~5i

Here , we have assumed , for the sake of simplic ity , tha t there is

a route joining any two regions. For more details on the description

of this model, see [8].

By using conditions (A) and (B) to eliminate the variables y
31 

and p
1
,

we obtain the linear complementarity problem formulation of the model:

find a vec tor X such that

(2.3) Y • c+p
T
a+P

TBPX ‘
~ 0 , X > 0 and xTy — o

I- ..- ~~~~~~~~~~~~~~~~~~~~ ——



Here P is the inulti-coninodity node-arc incidenc e matrix~ ~‘f a simple ,

• complete digraph C with n nodes and B is the block diagona l matrix

(2. 4) B~~

( %
.B)

where each B
3 

— (b
311
) is in by in. See [ 7 ]  for more details on the

derivation of the problem (2.3).

-
-
‘S.,

2/ It is obtained by replacing the ones in an ordinary node-arc incidence— 
matrix by identity matrices of order in. (cf. (2.2a) and (2,2b).I

_ _  _ _  —
~ ~~~~~~~~~~~~~~~~ _ ..~~~~~~~~ . _ —._ _ __~~~~ _, _ ., _ — —— .—.-.••.-
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3 . A UNIF IED F I ~4UtATIC~N

In the formulation t.~~,1\ and (,~~.3s,, the vector X ts arranged according

to  routes between regions~ i. e ., comodities passing through the same r ou te

are ordered consecutively , For our purpose , t t would be more convenient

to reformulate the problems with the vector X partitioned ac~- ording to

co~~ o d i t t e ~~. For the transshi pment problem ~~~~~~ this can be easily done .

In fac t , the resulting reformulation has the  form

(3 ,1’~ ~~~~~~~~~~~~~~~~~~~~~~~~ . ~~~.O and

Here ~ is the bloc k diagona l matrix

(3.2as, 1’ 

(
where each is the (single-conm ~oditv~ uode-arc inc t~1e-nce matrix of a

• simple , complete digraph with n t~~des  and A is the block matrix

i3 .2b’ A —  A - — A11 urn
I I

A - • - Aml

where A~~ is the n by n diagonal matrix whose 3-th diagona l entry is b

The vectors ~~~, ~ and X are the corresponding rearrangements of c , Y

and X respective ly .

It is also easy to reformulate the problem (2.11 in terms of

comm odities , However, it is our c~xitenti~n that the problem can be cast

in th. form (3 ,1~ as well . Itt what follows , we show how this is ~1~ne under

‘—‘4• ~~~~~~~~~~ . ~~~~~~~~~~~~~~ • - - - 
— I~~~~~

_ . -
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three asstmtptixis :

(1) Both matrices S and D are nonnegative

(2) Each coltmm of D has at most one nonz ero entry

(31 The vector c is strictly positive .

Observe that the matrices S and D are not required to have the

transportat ion structure (2.2a , b) to s a t i s f y  the first two conditions .

Len~na 1. Suppose that the assumptions (11 - (3) are satisLied , Then

any comp lementary solution to (2.1) must satisfy the condition : 2

1 2
Proof. Suppose that (x , y, X , X , ). ) is a comp lementary solution

to (2.1) with > 0 for some component i. Then ~y complementarity , it

follows that = 0. Let

J — ~j: D11 ~ 0)

Then for each J EJ , we have

Y~ — c~ + (ST).l )
1 ~

DjjX — c
1 

+ (ST\l
)~ > 0

which implies that X~ 0. Hence,

Z DjjXj
.
~~~

y
~~

.
~~
O

JE J

which is a contradiction. Q.E.D.

Referring to the transportation spatial model , Lemma 1 says that if

the transportation costs are strictly positive , then no excess demand is

possible at equilibrium.

- ~~~~~~~~
- - -

~~~~~~~ • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~.- - ~~~:.; ~ 
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Proposition 2. Under the same assumptions , problem (2.1) is equivalent

to

(3,3) u = s  +Gx - X  >0 x > 0

Y = (c + DTd) + D
TR D X  + sTx > 0 x > 0

— x - S X  >0 X~~~O

yT~ = ~
T
X = 0

in the sense that a complementary solution to one problem will always

give rise to one such solution of the other.

Proof. Let (x, y, X X
1 

X
2
) be a complementary solution to (2.1).

Then by Lemma 1 , we have y = DX. Hence

y = c + s Tx~ ~~D
T(v_ d~~~~)

or equivalently ,

(3.4) Y + DTv = (c + DTd) + DTHDX +

We claim that (x, X , X
1
) is a complementary solution to (3.3). it suffices

to show

XT(c + D
Td + DTH D X  + sTx l ) 0.

According to (3.4), the left-hand term is equal to

XT(Y + DTv) - (DX)Tv - ~~~ - 0

Conversely , suppose that (x, X , X) is a complementary solution

to (3.3). Define

~~~~~~~~~~~~~~~~~~ 1._.._ .
~ ~~~~~~~~~~~~~~~~~~~~~~~~~ - - --
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Remark. The second part of the proof remains valid if c is merely

nonnegative,

The last proposition establishes a first-stage transfonii;4tjon of

the problem (2.11 . To complete the process , we prove

Lenmsa 3. If the matrix S Is nonnegative , then any comp lementary solution

to (3.31 must satisfy : Ur(SX) — uT1~ . o.

Proof. In fact , if u1 0, then x , — 0 by complementarlty . Hence

— -  (SX) ~~O= 1. i =

from which the desired equalities follow readily . Q.E.D.

Proposition 4. Suppose that assumptions (1’ - (31 are satisfied . Then

problem (3.31 (and thus (2.1)’t is equivalent to

(3.61 V - (c + DTd + 5T~) + (DTHD + sTCSlx + STG~ 0 , x ~
- o

+ Gsx + GI& ~~0 ~~~~

T. TY x - X ~~~— 0

in the sense specified in Proposition 2. The latter linear complementarity

problem can be writ ten in the form

w _ r + p Ta + p T~pz~~s O  , ~~~~~~~~~



—
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where

( d \  Y \  f Xr • a , v • Z

p — :  ~) and B - (~ ~
)

Proof. Suppose that (x, X , Xl is a complementary solut ion to (3 .31.
We claim tha t (X , t~1 is a comtp lementat -y solution to (3.61. In [act ,

we have

S+ GSX+G M • s + G x - u + \ ~~~0

and

(c + DTd + 5T51 + (DTRD + s
’rcs1x +

.(c +DTd l + D TR n x ÷ sTX + s Tu~~.o

establishi ng the f e a si b i l i t y . The desired complementarity relationships

follow f rom Leema 3.

Conversely , let (X, ~) be a comp lementary solution to ~3.61. Define

x — ~~~ + S X  and X — s + G x .

Obviously (x , X , ),) sblves (3.3) . Q . E . D.

The last proposition shows that if the transporta tiat costs are

• all positive , then the transportation spatial equilibrium problem (2.11

can b. cast as a linear complementarity problem of the same type as the
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one obtained f rom the transshipment model. In particular , by partitionin g

the flow vector (Xl and the excess supp ly vector (~ l according to

cotasodities, we may rewrite the linear complementarity problem ( 3 . & t I

in the form (3.1) and (3.2) with each P1 
and A

u given by

f 

D~ 0 A~1 
0

(3.7) Pt — f  , A
1 

—

~ St I 0

where A~~ and A~~ are , respectively , n,, by n , and n 1 
by n

1 
diagonal matrices with

(A~~l - h and (A~~)~ 
~ 

— 
~ 

; and where is the

single-commodity , transportation constraint matrix 5 i.e., (2.2a) and

(2.2b) with m — 1.

It is interesting to note that in both cases , the matrices

are diagonal and the P
1 are identical. In fact, each P1 is the node-arc

incidence matrix of the graph (or network) underlying the model. This

is clear in the transshipment case. In the other case , the P~ (cf.

(3.7)1 can be considered as the node-arc incidence of a transportation

bipartite graph with a self-loop connecting each supply node. Such a

loop represents the excess supply at that node.

To sunmtarize, we conc lude that both the multi-commodity

transportation and transshipment spatial models can be formulated as

a linear co~nplementarity problem of the form (note the change of nc’tationl

(3.8) v .r +p Ts+ P TAPC>O • s > O

when, th. matrix P is block diagonal with the number of blocks equal to 

-~~~~~~~~~~~~ ----- ~~~~~~- ‘_ _ -~~~-• -~~~ 
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the number of commodities . We point out that the matrix PTAP has

th. block structure

(3.9) pT~•p - / 

~1 A 1 1 P1 - - ~~~ A 1 ~m

P
T A P P T A Pm ml 1 in mm in

I 

~~~~~~~ - -- - -  ——~~~~~~ — - —~~~~~ - - - -  ~~~~~~~~~~~~~~~~~~~~
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4. THE HYBRID METHOD

There are two basic reasons motivating the proposal of a hybrid

method for solving the two spatial models described earlier. The first

is the large size of the resulting linear complementanity problem which

is typical in practice. Fu~ instance , a transshipment problem with

lO-commodities and 50-regions would give rise to a 24,500 by 24 ,500 matrix

in the coniplementarity problem. The second reason is due to the recent

development of an efficient special-purpose algorithm for solving the

single-commodity tmodeLs~ ” (see (7)). It is hoped that this algorithm

would provide an effective subroutine for solving the multi-commodity

problems .

To state the hybrid method , we refer to the unified formulation

of the two models , i.e., the linear comp lementani ty problem (3.81 and

(3.9). Recall also that the matrix P is block diagonal with diagonal

blocks P~

M&ori thin

Step 0. Let — (z?,...,z°) be an arbitrary nonnegative vector and
-

• 
let be a scalar vithO ...~~~..2. Pu t k — O . “i

Step 1. For i — 1 ,...,m, solve the linear complementarity problem

3/ Although the reference treats only the single-commodity transshipment
model, due to the fact that the transportation modal gives rise to
exac t ly the same type of linear comp l.emetttantty problem it is not
difficult to extend the algorithm described in the reference to handle
th. transportation model. See section 5 for computational results on
this extension.

- —*•~~~~—__ - ,. ‘ -  ~~~~~~.~~~~~~~~~~~~~~ • •
• ‘T _~~: -I
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(4.1) W
i 

— r~ +P~s~ + P~A1~P~z1 > 0 , z~ > 0 and w~z~ — 0

with~’ ~~ — + ~ A~ p 2
k+1 

+ ~ A ~ 
k 

let ~
k+i be a solution

i - _ i i i i  j>i l i i i  i

and set

k+1 k k+l klj~ kZ~ Z
1

+ W
1 

(z1 
- z1 )

where car1 - max Cw:w < ~, , > 0 )

Step 2. Let

J_ ((i
~
J):(zr’)j>0 ,or (wr’)j

_ (r
j÷P~(sj+ t  ~~~~~~~~~~~~ <0)

If max (w~~~) c • where a is a given positive tolerance, stop.
(i,J)EJ

An approximate solution is at hand, Otherwise return to Step 1 with k

replaced by k+1.

In essence , the algorithm is a specialization of the modified block

SOR method for solving a general linear complementarity problem with

block structure (see (21). Concerning its convergence, we state the

following principal result.
.•-

~~~~~~~

Theorem 5. Suppose that the matrix A is symmetric positive definite .

Suppose also that for I — 1 ,... ,m , the system

t 
(4.2) O < y

1~~~
0 , P1

y
1

— O  , r~y1 < O

4/ The vectors r and s are partitioned as r ~~~~~~~~~~~~ and
in accordance with the matrix P.

_ _ _ _ _ _  _ _ _ _ _ _ _  - ~ _ _ _ _ _ _ _ _  ~~ — ,
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k k k
is inconsistent. Then the sequence ~z — (z 1, . . .,z~

)) of vectors

generated by the algorithm has a limit point. Moreover, any such limit

point solves the linear compleinentanity problem (3.8).

It should be pointed out that even though the matrix A is positive

definite , the matrix P
TAP (and each of its diagonal subniatrices

P~A~1P1
) may not be so. Hence, the theorem is not a direct consequence

of the convergence result established in the reference. r~1evertheless ,

it can be proved in very much the same way. In what follows, we sketch

the proof .

First of all , the inconsistency of the systems (4. 2) and the positive

definiteness of the matrix A imp ly the feasibility and hence the solvability

of each of the subprobleins (4.1). Thus each vector is well-defined .

Next , by using the function f(z) — (r + pT9)Tz + j(Pz)TApz to monitor the

progress of the algorithm , it is not difficult to show that the sequence

~ f(z
k
)) is monotonical.ty decreasing . From this it follows that the

sequence must be bounded and therefore has a limit point. Finally ,

that any such limit point solves the linear coniplementarity problem (3.8)

can be proved by using the positive definiteness of the matrix A.

Without the positive definiteness of the matrix P
TAP , there is in

general no guarantee that the entire sequence tz
k
) will in fact converge.

However , the next result shows that the sequence CPz
k
) will.

Proposition 6. Under the assumptions of Theorem 5, the sequence Cpz
k
)

converges to Pz* where z* is a limit point of

~.!2.2~• 
Observe that any limit point of the sequence must be of

- — —-- - - 

,- -‘ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -
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the form Pz* where z* is a limi t point of the sequence . The

fact that Cpz
k
) has at least one limit point follows from its

botmdedness (which is implied by the boundedness of ~z
k)). Suppose now

that CPZ
k
) has another limit point given by ~y* where y* is some limit

point of Cz
k
) . By Theorem 5, both y* and z* solve the linear

complementarity problem (3.8). By the positive definiteness of A , i t

can be proved easily that Py* — Pz*. Thus, the sequence [Pz~) has

a unique limit point and therefore converges . Q.E.D.

Specializing Theorem 5 to the two spatial models , we obtain

Theorem 7. Suppose that each of the matrices C~5,, N~ and B (cf. (2.2c)

and (2.4)) is symmetric positive definite, Suppose also that the vector c of

transportation costs is positive (in both models). Then the assumptions

of Theorem 5 are satisfied . In particular, the sequence of vectors

generated by the algorithm will converge , in the sense specified in Theorem 5

and Proposition 6, to a solution of the two models.

The proof of Theorem 7 is easy and thus omitted . Observe that in

the specialization , each subproblem (4.1) is precisely one of the

single-commodity type to which the algorithm described in [7] can be “1

applied .

-- - -~~~~~~~~ - ______
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5. COMPUThTIONkL EXPERIENC E

In this section , we report our computationa l experience~~
’ with

the hybrid method for solving some randomly generated spatial

transportation and transshipment models. For completeness , we first

present a brief st ary of the computational results (see Tables 1

and 2) wIth the spec ial-purpose principal pivoting algorithm (described

in [7]) for solving the single-commodity problems. We explain how the

data were generated. For the transportation model (cf. the formulation

(3.6)), the transportation costs were randomly generated in the interval

(0,10), the components of the vectors s and d in ( - 50,0) and ( -  10 , 0)

respectively and the diagonal entries of the matrices G and U in (0,5).

The data for the transshipment model were generated in the same way as

in [7].

The third coluzm~ (basic arcs) in Tables 1 and 2 refers to the

number of flow variables that are positive in the final solution.

Notice that this number is bounded above by the total number of regions less

one. The fourth column (excess supplies) in Table I refers to the

number of supply regions where the actual supply quantity exceeds the

effective supply shipped.

As with all relaxation methods, the efficiency of the hybrid

method proposed is critically dependent on the choice of the parameter

In the experimentation, we have tried several values. In Tables 3 and 4

below , we report a s~~zmiary of the results with the use of the particular

5/ All the computations were performed on a DEC-20 computer and in double
precision. The computer codes were written in FORTRAN. All the
timings reported are exclusive of input and output.
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(#supplies . #arcs #basic arcs #excess #pivots CPU time (in sec .’
#demands) supplies Total Per pivo t

(80,80) 6,400 100 57 794 298.983 0.389

(80.40) 3.200 55 65 399 77.307 0.194

(60,120) 7.200 138 38 933 406.102 U.~e35

(60 ,100) b ,000 129 27 707 250 . 170 0 .354

(40 , 120) ‘ .800 148 4 603 180.451 0 .299

(20 , 100) 2,000 96 1 192 26~388 0.137

Table 1 . Single-commodity transportation spatial model

CP U time (in sec .~
#regions #arcs #basic arcs ~frp ivots Total per pivot

120 14,280 71 377 158.397 0.420

105 10.920 62 142 45.527 0.321

90 8,010 59 311 76.272 0.249

75 4,150 43 175 29.232 0.167

30 870 17 35 .945 0.027

Table 2• Single-commodity transshipment spatial model

.
-

~~~~~ 

. ‘-- - - - — —  
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~~~~~~. ~~ - ~~~~~~~~~~~ --—~~~~~



-:t~~~ :h~ fastest . onvergence. ~~e data for the problems solved

were ~ener.ited ~n the same way as tn the singlo-commodity ease . The

tolerance c :.~r th~ termtnation criteria (cf. Step 2 in the algorithm)

was .~hosen to .‘e 1~) . As the cask of t e st i n g  for  te rminat ion  in

each iteration is rather time-consuming (because of the large number

of variables in the problem ), we chose not to perform such test at every

iteration , ~ut rather ~: every 5 iterations . The entries in the two

table s below should be self-explanatory .

- 
total

“supplies adem&nds ‘~commodittes ~iterations CPU time ~sec .’
~

20 23 3 1 .4 30 264 .871

15 15 9 1 .4 35 309.7~9

15 15 6 1 .4 55 371.865

1~ 10 9 1 .4 35 98.998

15 15 3 1.2 15 56.487

10 10 6 1 . 2  30 62.253

Table 3. Mu lti-Couni~ dity transportation spatial model

th r~~ions ~frcommodities ~friterations Total CPU time ~sec.~
2 1 .7 140 592.419

20 10 1. 7 125 326.102

20 o 1.7 120 150.913

15 10 1.7 60 56.449

15 4 1. 7 45 18.355

10 10 1.75 85 29.799

10 8 1.75 35 8.886

TabLe ‘
. Multi-commodity transshipment spatial mode l

— -~-—---— -- —-- —~~~--- -- ~~~~-- -  _ _ _ _ _
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b . CONCLUSION

In this paper , we have shown how a hybrid iterative method can be

used to solve the tnulti-conm~ dity transportation and transshipment

spatial equilibrium models. At this stage , we are unable to compare the

numerical performance of the proposed method wi th other methods that ar.~

applicable. To the best of our laiowledge . there is no published numerical

results for solving p rob lems as large as the ones solved in this paper .

(The Largest problem solved by the Bender ’s decomposition approach has

only eight supply and demand reg..ons and four commodities . See [9,1 O]. ,

It would be interesting to see how these problems can actually be solved

by other methods, especially the Bender ’s approach.
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